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Abstract—Lighting design is a complex, but fundamental, problem in many fields. In volume visualization, direct volume rendering
generates an informative image without external lighting, as each voxel itself emits radiance. However, external lighting further
improves the shape and detail perception of features, and it also determines the effectiveness of the communication of feature
information. The human visual system is highly effective in extracting structural information from images, and to assist it further, this
paper presents an approach to structure-aware automatic lighting design by measuring the structural changes between the images
with and without external lighting. Given a transfer function and a viewpoint, the optimal lighting parameters are those that provide
the greatest enhancement to structural information - the shape and detail information of features are conveyed most clearly by the
optimal lighting parameters. Besides lighting goodness, the proposed metric can also be used to evaluate lighting similarity and
stability between two sets of lighting parameters. Lighting similarity can be used to optimize the selection of multiple light sources
so that different light sources can reveal distinct structural information. Our experiments with several volume data sets demonstrate
the effectiveness of the structure-aware lighting design approach. It is well suited to use by novices as it requires little technical
understanding of the rendering parameters associated with direct volume rendering.

Index Terms—Automatic lighting design, structural dissimilarity, lighting similarity, lighting stability, volume rendering.

1 INTRODUCTION

In volume visualization, direct volume rendering has been widely used
for the analysis and presentation of volumes in a variety of fields,
ranging from medicine and engineering to geophysics and biology.
Meanwhile, many classification methods based on the information ex-
tracted from the volume have been proposed to identify and analyze
features of interest. However, the perception of complex structures
inside the volume depends not only on the classification, but also on
the rendering parameters, most particularly the viewpoint and light-
ing parameters. The viewpoint determines how many features can be
presented in the rendered image. The lighting has a major impact on
the viewer’s perception of the shape and detail of features [3]. For
example, the effect of specular reflections [8] assists the judgement of
convexity/concavity and the perception of the smoothness of structural
surfaces.

While automatic viewpoint selection has received wide attention in
volume visualization in recent years [2, 12, 25, 29], relatively little
research has considered the lighting design problem in direct volume
rendering. During volume rendering, once the transfer function and
the viewpoint are specified, the visual perception of features in the
volume is mainly decided by the lighting parameters. A result of poor
lighting design is that meaningful information is not conveyed effec-
tively to the users, which undermines the fundamental goal of visu-
alization. Unfortunately, the specification of appropriate lighting pa-
rameters is a very complex and labor-intensive process, especially for
novices due to their limited technical understanding of the rendering
process.

Automatic lighting design has been well investigated for polygon
rendering in computer graphics and isosurface rendering in scientific
visualization. A perceptual quality metric [24] has been proposed to
evaluate the ability of a rendered image to communicate information
about the scene, and information entropy-based metrics (e.g., lighting
entropy [10], illumination entropy and multi-scale entropy [26]) have
also been developed for automatic lighting design.
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Despite the fact that structural information plays a significant role
in the human visual system (HVS) [27], none of these existing meth-
ods have considered the use of structural information to evaluate the
lighting parameters. They evaluate images rendered individually under
different lighting configurations, but then fail to assess how well these
configurations improve the presentation of structural information.

In fact, evaluation of the enhancement of structural information that
results from different lighting configurations can be implemented nat-
urally for direct volume rendering. Direct volume rendering treats
each voxel as a radiance emitter, and the basic information of fea-
tures can be shown in a rendered image even without applying any
external lighting. Hence, the quality of an external lighting configura-
tion can be assessed by the amount of additional structural information
conveyed by the lighting.

Based on this observation, this paper presents a novel method to
evaluate lighting quality based on the structural information in the ren-
dered images, which is in line with the basic mechanism of the HVS.
An approach is proposed to support highly automated configuration of
the lighting for direct volume rendering. The main contributions are
summarized as follows:

1) We propose a multi-scale homogeneity-weighted structural dis-
similarity metric (MS-HWSD), which captures the difference in struc-
tural information between two images. When the MS-HWSD is ap-
plied to measure the dissimilarity between images rendered with and
without external lighting (the illuminated and unilluminated images,
respectively), it indicates the quality of the lighting configuration in
terms of its ability to provide structural information.

2) We also put forward three lighting characteristics in terms of
lighting goodness, lighting similarity and lighting stability in a simi-
lar fashion to the view characteristics [1, 2]. Lighting goodness mea-
sures the lighting quality based on the MS-HWSD from (1); light sim-
ilarity measures whether a light source is highly representative, and
evaluates the complementarities between multiple light sources; light-
ing stability provides an extra measure on the light sources by con-
sidering the structural similarity of images rendered from neighboring
light sources.

3) An automatic lighting design approach has been developed,
based on the lighting characteristics proposed in (2). It supports the
design of single and multiple light sources and can cope with differ-
ent illumination models and find optimal solutions for various lighting
parameters.

To the best of our knowledge, this is the first paper to address
structure-aware lighting design for volume visualization.

The paper is structured as follows. Related work is discussed in
Section 2, while Section 3 explains the motivation for the work, with
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further details. Section 4 describes the MS-HWSD, and in Section 5,
we propose three lighting characteristics. Section 6 describes the auto-
matic lighting design techniques. In Section 7, we present and discuss
the results obtained by applying the proposed techniques to various
volumes and validate their effectiveness by user studies. Finally, we
draw conclusions in Section 8.

2 RELATED WORK

Lighting design has long been an active research topic in computer
graphics, and many lighting design methods have been proposed over
the years. Traditional methods usually directly manipulate the lighting
parameters, such as the light position and intensity. The specification
of appropriate lighting parameters in volume visualization is generally
a trial-and-error data-exploration process, which is time consuming
and labor intensive, especially for novice users.

A great deal of attention has been paid to inverse lighting design,
which is a major category of semi-automatic lighting design in com-
puter graphics; it is surveyed in [19]. The general idea of inverse light-
ing design is to allow users to interact with the desired lighting effects
through indirect user interfaces or to generate a desired lighting image
through painting, based on which the lighting parameters are solved
via optimization in an automatic manner. Poulin and Fournier [21]
suggested direct manipulation of highlights and shadows to infer the
optimal lighting parameters implicitly. Schoeneman et al. [22] opti-
mized the lighting intensities at given positions to minimize the differ-
ence between the user-painted image and the rendered image. Pellacini
et al. [20] proposed a non-linear optimization technique for a general
painting interface to derive all the lighting parameters. However, the
effectiveness of a painting interface is significantly less than direct and
indirect interfaces, according to a later evaluation in [14], mainly be-
cause the desired goal images are usually obtained by sketching rather
than painting. Furthermore, without a clear definition of features at the
data exploration stage, it is difficult to directly manipulate the lighting
effects or to paint the desired lighting images in order to derive appro-
priate lighting parameters for volume visualization.

Besides indirect and painting interfaces, several metrics have been
proposed for automatic lighting design. Kawai et al. [13] presented
subjective impressions of rendering qualities, such as pleasantness and
privateness, which are maximized by optimizing lighting parameters.
A perceptual quality metric involving six terms has been investigated
for automatic lighting design by Shacked and Lischinski [24]. The
goal is to evaluate the effectiveness in communicating information
about the scene, such as shape, detail and relationships. No user study
has been performed to validate this quality metric. Lighting entropy,
which measures the brightness distribution of the visible pixels, has
been used by Gumhold [10] to automatically determine the optimal
light position, while Vázquez [26] developed illumination entropy and
multi-scale entropy for lighting design by looking into color distribu-
tion and pixel correlation. However, all of these metrics are derived us-
ing the illuminated image only and do not take into account the presen-
tation of structural information. In contrast, the proposed MS-HWSD
in this paper follows the basic principles of the HVS by measuring
structural differences between the unilluminated and illuminated im-
ages. Consequently, it can achieve considerably better results than
those produced by existing methods.

There are several methods for optimizing lighting parameters in vi-
sualization. Marks et al. [18] introduced Design Galleries to explore
the parameter space for light selection and placement. It automatically
generates and organizes rendered images under various lighting pa-
rameters, and allows users to select the lighting parameters by choos-
ing satisfying images. LightKit developed by Halle and Meng [11]
suggests the default light parameters of the three-point lighting model,
while Light Collages presented by Lee et al. [16] places light sources
for surfaces to support better shape perception. In direct volume ren-
dering, Chan et al. [4] adaptively refined the ambient, diffuse and spec-
ular coefficients to enhance the image quality. The lighting parameters
are adjusted by minimizing the information deviation between the im-
age and ray at each pixel.

(a) (b)

(c) (d)

Fig. 1. Lighting quality evaluation based on the MS-HWSD. All three illu-
minated images have the same lighting entropy 2.41, but different MS-
HWSD values for different lighting parameters. Higher MS-HWSD val-
ues mean the lighting reveals structural information more clearly com-
pared to the unilluminated image. (a) The unilluminated image. (b)
Illuminated image with MS-HWSD = 0.324. (c) Illuminated image with
MS-HWSD = 0.249. (d) Illuminated image with MS-HWSD = 0.234.

3 MOTIVATION

This work is motivated by one of the basic assumptions of the HVS
- that it is highly sensitive to structural information [27]. From this,
the effectiveness of lighting can be assessed by the amount of struc-
tural information that is conveyed by the rendered image. Structural
dissimilarity between two images can be quantified by calculating the
variation of pixel colors in local regions.

Direct volume rendering usually regards each voxel as an illuminat-
ing particle with a certain level of density, and the mapping from the
density to the optical property is specified by the classification. Each
feature is assigned a distinct optical property, so some basic structural
information of features can be revealed expressively without using ex-
ternal lighting. The purpose of applying external lighting is to em-
phasize shape and to highlight details on the surfaces of structures.
The proposed approach for structure-aware lighting design searches
for lighting parameters that will make interesting structures more per-
ceptible.

An illuminated image can be thought of as the sum of an unillumi-
nated image and the lighting effect, so the evaluation of the lighting
effectiveness can be reasonably approximated by measuring the struc-
tural changes (i.e., dissimilarity) between the unilluminated and illu-
minated images. To this end, we introduce a structural dissimilarity
metric (SDIM) to measure these changes.

On the other hand, over-strong or improper illumination may lead to
the loss of structural details, so some structural information may be re-
duced by the introduction of external lighting. We therefore introduce
a homogeneity metric to distinguish between structural enhancement
and structural weakening.

By combining these two elements, this paper proposes a
homogeneity-weighted structure dissimilarity metric (HWSD) to esti-
mate the enhancement of structural information produced by the light-
ing. As the viewing conditions (e.g., image resolution and viewing
distance) also have an important impact on the perceivability of struc-
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The unillumianted 
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H(X)

SDIM(X,Y)

H(Y)

HWSD(X,Y) = 

SDIM(X,Y)(H(X)-H(Y))

Fig. 2. The pipeline of homogeneity-weighted structural dissimilarity
metric (HWSD). The structural dissimilarity metric (SDIM) measures
perceptual structural differences between the unilluminated and illumi-
nated images. The homogeneity metric (H) estimates how uniform the
pixels are in a local region within an image, and is used to distinguish
structural enhancement and degradation due to the lighting.

tural information from the image, we extend the proposed metric to the
multi-scale HWSD (MS-HWSD) to incorporate structural changes at
different resolutions. A clear advantage of the MS-HWSD is that it re-
flects the characteristics of the HVS. Fig. 1 illustrates the power of the
MS-HWSD. The three images in Fig. 1(b)-(d) are rendered from dif-
ferent light positions. They have the same lighting entropy, as the in-
formation entropy-based metric is not sensitive to the HVS. The shape
on the top of the engine and the detail on the structural surface are
more clearly conveyed in Fig. 1(b), and the MS-HWSD can generate
a consistently perceived difference of visual structures similar to the
HVS.

Further, as in work on viewpoint selection, we propose three light-
ing characteristics: lighting goodness, lighting similarity and lighting
stability, to assist the evaluation of different lighting configurations.
While lighting goodness is purely based on the structure dissimilarity
(i.e., the MS-HWSD), lighting similarity looks into the structural in-
formation revealed by different lights, and lighting stability helps to
select stable light positions - these three elements form the basis of the
proposed method for automatic lighting design.

4 MULTI-SCALE HOMOGENEITY-WEIGHTED STRUCTURAL
DISSIMILARITY METRIC

The homogeneity-weighted structure dissimilarity metric (HWSD) is
composed of the structural dissimilarity metric and the Homogeneity
metric. The high-level procedure of the HWSD is shown in Fig. 2.

Structural Dissimilarity Metric. The Structural DissIMilarity
metric (SDIM) is based on the Structural SIMilarity (SSIM) index
measure introduced by Wang et al. [27]. The SSIM was originally
used to evaluate the degradation of visual quality between a reference
image and a distorted image; in this, it regarded image degradations as
the perceived structural changes. In the context of lighting design, the
unilluminated image and the illuminated image are considered as the
reference image and the distorted image, respectively, and the SSIM is
used to measure perceived structural changes between them.

For completeness, we briefly review the SSIM. The SSIM measures
the local structural similarity for each corresponding pair of pixels in
their local neighborhoods. It separates the structural similarity mea-
surement into three comparisons: luminance, contrast and structure.

Suppose x and y represent the local neighborhoods from the unil-
luminated and illuminated images, respectively. The number of the
pixels in each neighborhood is N (N = 11× 11 is suggested in [27]).
The luminance comparison is performed by the Gaussian weighted
mean intensities µx = ∑N

i=1 wixi and µy = ∑N
i=1 wiyi. The luminance

function l(x,y) is defined as follows:

l(x,y) =
2µxµy + c1

µ2
x +µ2

y + c1
, (1)

where c1 is a constant based on the range of the pixel values and is
included to avoid the introduction of a singularity. The luminance
function gradually declines as the intensity of y increases. This formu-
lation is qualitatively consistent with Weber’s law, which states that
a just-noticeable difference in the intensity change is approximately

proportional to the original intensity, as the HVS is more sensitive to
a relative change in luminance, rather than an absolute one.

Similarly, the contrast function c(x,y) is an estimate of the signal
contrast and is defined as:

c(x,y) =
2σxσy + c2

σ2
x +σ2

y + c2
, (2)

where σx = (∑N
i=1 wi(xi −µx)

2)1/2 and σy = (∑N
i=1 wi(yi −µy)

2)1/2,
and the constant c2 has the same functionality as c1. The contrast func-
tion monotonically decreases when the local variance of y becomes
gradually different from that of x. This formulation also obeys the
contrast masking feature of the HVS.

The SSIM assumes that the structural information in an image is
determined by the structure of objects in the scene, and is independent
of the average luminance and contrast. Thus, the structural similarity
is quantified through a correlation between the images, as follows:

s(x,y) =
σxy + c3

σxσy + c3
, (3)

where σxy defines the inner product between the vectors x− µx and
y− µy, σxy = ∑N

i=1 wi(xi −µx)(yi −µy), and the constant c3 has the
same functionality as c1. The structure function decreases when the
intensity in y increases in a manner uncorrelated to the intensity in x.

The overall similarity measure is the composition of the three com-
ponents, and the formulation of the SSIM is as follows:

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
, (4)

where c3 = c2/2 to simplify the formulation. It is worth pointing out
that the three components are relatively independent. For example, a
change of luminance or contrast does not influence the structure of the
image. Fig. 3 shows two illuminated images of the vismale data set,
together with their SSIM images. Fig. 3(c)-(e) show the luminance,
contrast and structure comparisons between (a) and (b), respectively.

The SDIM proposed in this work is a distance metric for measur-
ing structural differences between the unilluminated and illuminated
images. The SDIM is the converse of SSIM, defined as follows:

SDIM(x,y) = 1−SSIM(x,y). (5)

As the SSIM value lies in (−1,1], the valid range of the SDIM is [0,2),
with higher values indicating higher structural dissimilarity. When the
lighting has no effect on features in the illuminated image (i.e., x = y),
the SDIM reaches its minimum 0. Loza et al. [17] introduced another
structural dissimilarity definition DSSIM = 1

SSIM −1. However, this is
non-monotonic for the SSIM range (−1,1], so it is inappropriate for
lighting quality evaluation.

The SDIM measures structural differences in terms of the just-
noticeable intensity, local contrast and structures of the features be-
tween the unilluminated and illuminated images. For instance, the
specular reflection enhances shape perception of features [8], and the
SDIM can estimate these differences by the just-noticeable intensity
change on the surfaces of features. Edges and contours contain a
wealth of information about the structures of features [15], and the
SDIM can identify such information by evaluating the changes in local
contrast due to the lighting. The SDIM can also capture the increasing
of local variances of the details on the surface revealed by the lighting.

Homogeneity Metric. By the symmetry of Equation 5, the SDIM
measures only structural differences between the two images, with-
out indicating which contains the clearer structures. This is sufficient
for the evaluation of image degradation, where the reference image is
known to have satisfactory quality, so the degradation must lie in the
other image. However, as previously mentioned, in lighting design,
additional external lighting may either enhance or diminish structural
perception, such as the highlights in Fig. 3(h), so we need to further
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. SSIM and HWSD results of the vismale data set under two different light sources. Darker areas in SSIM results indicate larger structural
differences between the unilluminated and illuminated images. Brighter areas in HWSD results mean greater structural enhancement between the
unilluminated and illuminated images. The mean SDIM [= (1 - SSIM)] of the illuminated image (b) is lower than the value of the illuminated image
(h), but the mean HWSD of (b) is larger than the value of (h). This is because the homogeneity metric successfully distinguishes enhancement and
degradation in structural perception, and the HWSD values of the over-illuminated region in (h) are negative in the corresponding region in (j). (a)
The unilluminated image. (b) An illuminated image. (c) The SSIM’s luminance comparison of (a) and (b). (d) The SSIM’s contrast comparison of
(a) and (b). (e) The SSIM’s structure comparison of (a) and (b). (f) The SSIM result of (a) and (b). (g) The HWSD result of (a) and (b). (h) Another
illuminated image. (i) The SSIM result of (a) and (h). (j) The HWSD result of (a) and (h).

distinguish between these possibilities when considering the effect of
using external lighting.

Insufficient and excessive illumination can both fail to present struc-
tural details effectively [10], but insufficient illumination is not appli-
cable to our approach. This is because, compared to the unilluminated
image, lighting never locally decreases the brightness of features in
the illuminated image (if the ambient lighting coefficient is 1), so we
need merely to avoid over-illumination.

In this work, the homogeneity metric is used to identify the over-lit
areas in the illuminated image. Homogeneity is a metric indicating
how uniform the pixels are in a local region within an image [5]. This
is estimated by applying the standard deviation σ and the entropy e
to a local neighborhood x of size N. The definition of the standard
deviation σx is the same as that of the contrast function of the SSIM,
and the formulation of the entropy ex in the local region is defined as
follows: ex = −∑J

j=1 p jlogp j, where p j =
#xi= j

N is the probability of
the pixel value at the j-th bin of the histogram of x, and the intensity
level in the histogram is J. The maximum entropy occurs when all
pixel values in x are different (at different bins of the histogram), and
the entropy reaches its minimum when all pixel values are in the same
bin of the histogram.

Although the original homogeneity definition in [5] further contains
the edge value and the 4-th moment of the intensity distribution com-
ponents, we found that, in practice, they make little contribution to
the lighting design results, and a reduced form offers an equivalent ca-
pability of evaluating the uniformity and improves the computational
efficiency. For example, the use of the original homogeneity generates
the same optimal light source as the reduced form for the engine data
set in Fig. 5(a). Hence, we define the homogeneity metric of a local
region x as follows:

H(x) = (1− σx

σmax
)(1− ex

emax
), (6)

where σmax and emax are the maximum values of the standard devi-
ation and the entropy in both unilluminated and illuminated images,
respectively. The homogeneity increases when the intensities in the
local region become much more similar. The valid range of the homo-
geneity is [0,1], with higher values indicating higher uniformity.

When the illuminated image is compared to the unilluminated im-
age, the homogeneity metric provides a good measure of the structural
weakening from over-illumination - a large increase of homogeneity
implies the creation of more flat regions due to the use of lighting that
is too strong, while a significant decrease suggests structural enhance-
ment resulting from lighting that is more appropriate.

Homogeneity-Weighted Structural Dissimilarity Metric. We
combine the structural-dissimilarity metric and the homogeneity met-
ric to form a Homogeneity-Weighted Structural Dissimilarity metric
(HWSD) as follows:

HWSD(x,y) = SDIM(x,y)(H(x)−H(y)), (7)

where H(x) and H(y) are the homogeneity values of the local neigh-
borhoods x and y from the unilluminated and illuminated images, re-
spectively. The HWSD value grows quickly when the lighting reveals
structures more clearly than the unilluminated image.

The HWSD utilizes the difference of the homogeneity values to
distinguish structural enhancement and degradation. When the light-
ing enhances the structures in the illuminated image, the homogeneity
value H(y) decreases compared to H(x), and this results in a positive
HWSD value. Higher positive HWSD values represent more structural
enhancement in the illuminated image. On the other hand, when the
lighting weakens the structures in the illuminated image, for exam-
ple, over-illumination produces more flat and less structural regions
with the increased homogeneity value H(y), and this leads to a nega-
tive HWSD value to penalize this situation. Negative HWSD values
indicate that the external lighting actually diminishes the overall struc-
tural perception in the illuminated image. Figs. 3(g) and (j) show two
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(a) (b) (c)

Fig. 4. Visual comparison of three lighting design methods for a hy-
drogen atom data set. The sphere in the bottom-left corner is used to
illustrate the lighting effect. (a) Optimal light source using lighting en-
tropy. (b) Optimal light source using multi-scale entropy. (c) Optimal
light source using the proposed MS-HWSD.

HWSD results. Compared to Fig. 3(g), the HWSD values of the over-
illuminated region in Fig. 3(h) are negative in the corresponding region
in Fig. 3(j).

Since the SDIM and homogeneity metric are both defined in lo-
cal neighborhood regions, the HWSD preserves the information of the
pixels’ correlation properly, which is an important factor in lighting
design [26]. In contrast to the symmetry of SSIM and SDIM, the
HWSD is not commutative, as HWSD(x, y) = -HWSD(y, x). The valid
range of the HWSD is (−2,2).

Multi-Scale HWSD. As the perceptibility of structural informa-
tion in the image depends on its resolution and viewing distance, a
single-scale method may be inappropriate for all lighting evaluations.
Additionally, the multi-scale extension of SSIM (MS-SSIM) proposed
in [28], has proven to produce better results than the single-scale SSIM
for image quality assessment.

We propose a multi-scale HWSD metric (MS-HWSD) to evaluate
the structural enhancement generated by the lighting at different res-
olutions. A low-pass filter is employed to downsample the unillumi-
nated and illuminated images successively by a factor of 2, and the
HWSD is applied to the filtered images at each scale. The MS-HWSD
is obtained by averaging all single-scale HWSD values as follows:

MS-HWSD(X ,Y ) =
1
Ns

Ns

∑
j=1

(
1

M j

M j

∑
i=1

HWSD(x j
i ,y

j
i )), (8)

where X and Y are the unilluminated and illuminated images, respec-
tively, x j

i and y j
i are the local neighborhoods at the i-th pixel of the

filtered unilluminated and illuminated images at the j-th scale, M j is
the total number of pixels in the filtered image at the j-th scale, and Ns
is the number of scales used. The inner summation is a mean HWSD,
which evaluates the overall structural enhancement at the j-th scale
by taking the average over all pixels in the image. As the MS-HWSD
incorporates all enhancements of the structural information at the mul-
tiple scales, it improves the efficiency and robustness of the HWSD.

5 LIGHTING CHARACTERISTICS

As mentioned in Section 3, to evaluate and compare different light-
ing configurations, we propose three lighting characteristics: lighting
goodness, lighting similarity and lighting stability.

Lighting Goodness. Lighting goodness measures the effective-
ness of different lighting configurations in terms of conveying struc-
tural information. External lighting may improve various aspects of
structural perception, such as the shape of features, details of surfaces
and feature occlusion relationships. A lighting configuration is good
if it reveals a greater level of structural information. The SDIM is de-
signed to measure the structural changes between unilluminated and
illuminated images, and the MS-HWSD identifies the structurally en-
hanced regions in the illuminated image at different scales. Thus, the
MS-HWSD can be used to measure lighting goodness - it is desir-
able that the lighting has a high MS-HWSD value. Fig. 4 shows three
rendered results under different light configurations. In terms of the
MS-HWSD, Fig. 4(c) has the highest value, while Fig. 4(a) has the
lowest value.

Lighting Similarity. Lighting similarity estimates the similarities
with regard to the structural information revealed by different lighting
configurations. This is a very useful measure to see whether a light
source is highly representative, and also to judge the complementari-
ties between two light sources.

The multi-scale extension of SSIM (MS-SSIM) [28] is a good met-
ric to evaluate the structural similarity of illuminated images under
different lighting configurations. To compare two different lighting
configurations, the MS-SSIM is calculated directly based on two il-
luminated images, in contrast to the MS-HWSD based on the unillu-
minated and illuminated images. Two lighting configurations with a
high MS-SSIM value are similar, as they convey a great deal of simi-
lar structural information in their illuminated images. However, light-
ing similarity based on the MS-SSIM is not transitive, i.e., if lighting
configuration A is similar to lighting configuration B and C, it does
not mean light configuration B is similar to light configuration C, and
actually the illuminated images under lighting configuration B and C
may be significantly different. In Fig. 4, the lighting configuration
in Fig. 4(c) is the most similar to that in Fig. 4(b), and the lighting
configuration in Fig. 4(a) is the most dissimilar to the other lighting
configurations.

Lighting similarity can be used to search for representative lighting
configurations. If a lighting configuration is similar to many others,
it is representative and hence is a good candidate for conveying the
corresponding structures. Another application of lighting similarity
is that the design of multiple light sources should consider lights that,
individually, produce low similarity as they can enhance the perception
of different structures.

Lighting Stability. Lighting stability indicates the amount of
change of structural perception when the position of a light source is
moved within a small neighborhood. It can be also evaluated through
the MS-SSIM. The MS-SSIM is applied successively to the image illu-
minated from the current investigated lighting position and the images
illuminated from each of a set of neighbouring positions. These MS-
SSIM values are summed to obtain the quantified stability value for
the current lighting position; a larger stability value implies a more
stable light source. In lighting design, lighting stability can be inte-
grated with lighting goodness to help choose an optimal light in terms
of both structural perception and stability.

6 AUTOMATIC LIGHTING DESIGN

Many illumination models can be used for direct volume rendering.
Without loss of generality, let us firstly consider the Blinn-Phong local
illumination model. This model can be calculated in real time, and
hence is well suited to fast quality evaluation of the lighting. Formally,
the color of a rendered voxel can be expressed as:

C = (ka + kd(N̂ · L̂))CT F + ks(N̂ · Ĥ)n, (9)

where ka, kd , and ks are the ambient, diffuse, and specular lighting
coefficients respectively, n is the shininess exponent, CT F is the color
from the transfer function, N̂ is the normalized gradient direction of
the voxel, L̂ is the light direction, and Ĥ is the normalized half-way
direction. In order to distinguish features in the visual representation,
the color from the transfer function is used for the ambient and diffuse
components. Light sources are chosen to be white to preserve the
original hue for the visual labeling of features, and this is applied only
to the specular component.

First, we consider the selection of the light position for a single
point light source at a fixed viewpoint. The candidate positions for the
light source are considered to be located on a fixed-distance bounding
sphere in the volume, referred to as the light-position sphere. The
HEALPix package [9] is used to generate evenly distributed candidate
positions over the light-position sphere.

A number of candidate positions (we use 768) are generated as the
initial candidates. The algorithm evaluates the MS-HWSD values of
these candidate positions, and then generates sampling positions in
regions where the MS-HWSD values are highest to further search for
the optimal light position that is, the one with the highest value. The
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Fig. 5. Automatic lighting design for the engine data set. (a) The first optimal light source. (b) The deformed light-position sphere for the first optimal
light source. The radius of each light position is proportional to the normalized lighting quality (the MS-HWSD) and the color mapping from blue
to red corresponds to lighting quality from low to high. (c) Two optimal light sources (α = 0.4 in Equation 10). The shininess exponent is 40. (d)
The optimal shininess exponents for the two light sources in (c). The shininess exponent is searched from 20 to 80 with step size 1. The optimal
shininess exponents are 47 and 74 for the two lights. Highlights are reduced to improve structure perception.

optimal light position for the engine data set is shown in Fig. 5(a), in
which the shape of large structures and the detail on the top surface
are clearly revealed. A deformed light-position sphere is illustrated in
Fig. 5(b) for the lighting quality comparison (the MS-HWSD) of this
selection. It is clear that, for the engine data set viewed from this point,
there are three areas of high lighting quality.

Multiple Light Sources. The automatic design process for single
light sources can be extended to consider the design when using mul-
tiple light sources. A possible approach would be to search for the
optimal light positions by evaluating all possible combinations of the
candidate positions, though this has the obvious shortcoming of poor
scalability with the number of light sources. If M is the number of
the candidate positions and K is the number of light sources, there are
O(MK) lighting configurations.

In practice, users usually place light sources one by one. Although
this may not lead to the globally optimal configuration, it is easy and
flexible for users, and it allows straightforward use of the MS-HWSD.
After the first optimal light source has been selected, the image ren-
dered under the first light source serves as the unilluminated image for
the next selection. Thus, light sources can be added successively until
a satisfactory result is obtained. This approach scales well with the
number of light sources, as the computational complexity is O(MK).

During the design of multiple light sources, it is desirable that dif-
ferent light sources reveal different structural information. Two light
sources positioned closely together will put light energy into similar
regions; while this may make, for example, the areas near edges more
perceptible by increasing the contrast, it does not introduce any ad-
ditional structural information. For this, we use lighting similarity as
a second criterion in the search for the next light source. This light
source should not only further enhance structural information in the
rendered image but should also have low similarity in relation to each
of the previously selected light sources. Thus, the measure for the next
light source l is modified as follows:

E(l) = αMS-HWSD(X ,Y )+(1−α)
1
Ks

Ks

∑
i=1

MS-SDIM(Zl ,Zi), (10)

where X is rendered by all previously selected light sources, Y is ren-
dered by adding the current light source l, Zl and Zi are rendered in-
dividually under the light source l and the i-th selected light source,
respectively, and Ks is the number of previously selected light sources.
The MS-SDIM is the multi-scale extension of SDIM as follows:
MS-SDIM(Zl ,Zi) = 1−MS-SSIM(Zl ,Zi), where the MS-SSIM [28]
is the multi-scale SSIM. The parameter α in the range [0,1] is used to
balance the structural enhancement in the first term and the dissimilar-
ity between the light sources in the second term. The user can adjust
α according to their specific applications. If α = 0, the user obtains

a light source which is most dissimilar to the previously selected light
sources, while if α = 1, the next light source has the highest lighting
goodness value, but lighting similarity is not considered. From our
experiments, α = 0.4 offers a good balance.

Using multiple light sources significantly improves the results.
Fig. 5(c) depicts the optimal configuration of two light sources for the
engine data set. Compared to Fig. 5(a), more structural details can be
perceived under two light sources, especially the details on the side of
the engine.

Other Lighting Parameters. Apart from introducing additional
light sources, other parameters of the light source can also be adjusted
automatically to provide better structure perception, based on the MS-
HWSD. These include the diffuse and specular coefficients and the
shininess exponent. The optimal lighting parameter is sought in the pa-
rameter domain by iteratively evaluating the goodness measure of the
current lighting parameters for each light position. An extension from
using point light sources to directional light sources is also straightfor-
ward, as the light direction can be directly sampled on the bounding
sphere of the volume as for the light position. Fig. 5(d) shows the opti-
mal shininess exponents for the two optimal light sources in Fig. 5(c).

Other Illumination Models. As the lighting design method re-
quires only unilluminated and illuminated images, it can easily be ap-
plied to other illumination models.

Local illumination models, such as Blinn-Phong, primarily reveal
the structural shape and local details, while global illumination models
further depict the occlusion relationships between structures through
mutual shadowing. Thus, we integrate shadows into direct volume
rendering and employ our approach to select the optimal lighting pa-
rameters. Shadows can increase the MS-HWSD value by introducing
the shadowing edges, which is a clear occlusion aspect of the spatial
relationships between features. On the other hand, as shadows remove
lighting from features, the MS-HWSD value would be reduced com-
pared to local illumination models, and this is helpful for avoiding
the over-shadowing associated with complex geometries, which pro-
duces complex, highly structured cast shadows that reduce structural
perception. Thus, the MS-HWSD favors a light position with a good
balance between the benefits of the shadowing edges introduced and
the drawbacks of over-shadowing. Fig. 6 shows the optimal results of
the light position for a vortex data set without and with shadowing.
Compared to the rendered result without shadowing in Fig. 6(a), the
rendered result in Fig. 6(b) provides more information about the struc-
ture arrangement by the inclusion of shadows, but does not have so
many shadow regions that the local contrast of structures is reduced.

Stable Light Source. In some applications, users require stable
lighting conditions. For this, lighting stability can be integrated with
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Fig. 6. Automatic lighting design without and with shadowing for the vor-
tex data set. Shadowing provides more perceptual cues for the spatial
relationships of features. (a) Optimal light source without shadowing.
(b) Optimal light source with shadowing.

lighting goodness, with the modified lighting quality being defined by:

E(l) = βMS-HWSD(X ,Y )+(1−β )
1

Kn

Kn

∑
i=1

MS-SSIM(Y,Zi), (11)

where X is the unilluminated image, Y is an illuminated image under
the light source l, and Zi is an illuminated image under the i-th neigh-
bor light position, Kn is the number of neighbor light positions (Kn = 8
is satisfactory), and the parameter β is in the range [0,1]. The lighting
quality is a weighted combination of the structural enhancement in the
first term, and the stability between the light being considered and its
neighbors in the second term. Users can adjust β according to their
needs; if β is reduced, the selected light source becomes more stable.

7 RESULTS AND DISCUSSION

We have implemented the automatic lighting design discussed above.
The rendered results are generated through pre-integrated direct vol-
ume rendering [7], which is implemented in a GPU-based ray-casting
volume renderer. The shadow ray technique is integrated into the vol-
ume renderer to compute shadow effects.

The unilluminated and illuminated images are two 512 × 512
floating-point textures. The MS-HWSD is applied to the intensity
channel of gray images, while for the color images, it is obtained by
summing the MS-HWSD values calculated for the R, G, B compo-
nents individually. As the HVS normally uses intensity variations to
determine shape, the sum is a rough approximation of the intensity.
On the other hand, as different features are often classified by distinct
colors, the separate evaluation can preserve this visual labeling infor-
mation of features. The number of scales used for results presented
in this paper is 4. The MS-HWSD and MS-SSIM evaluation are per-
formed on the GPU, which improves the computational efficiency by
exploiting the massive parallelism of the GPU and avoiding texture
read-back. Although the computational times for the automatic light-
ing design from a fixed viewpoint depend greatly on the data set due
to the need to render the illuminated images, the computational times
for the MS-HWSD evaluation are relatively fixed. In our experiments
with image sizes of 512× 512, the average evaluation was about 12
seconds for all 768 light positions on an Intel Core i5 760 (2.80 GHz)
processor with an NVIDIA GeForce GTX 470.

The proposed automatic lighting design approach is used to seek an
adequate configuration of the lighting parameters. We now consider
the effectiveness of each of the three lighting characteristics described
in Section 5.

Lighting Goodness. Figs. 5 and 6 show the lighting design re-
sults of the engine and vortex data sets based on the proposed lighting
goodness criterion for single light source, two light sources and shad-
owing. The selected light sources improve shape and detail perception

by enhancing local contrast, and introduce shadows which assist the
understanding of spatial occlusion relationships.

As can be seen from Fig. 5(b), the lighting qualities above the en-
gine are better than those behind it. This is usually true for opaque
objects, as the front surfaces receive less lighting from lights behind
the object to enhance the visual contrast of the global structures and
surface details, and this makes them less perceptible for scene inter-
pretability. The selection of the first light source for opaque objects
is similar to the key light in the three-point lighting model, which is a
standard method used in visual media. However, there is a significant
difference: each voxel of the volume is taken as a radiance emitter,
while the subject in the three-point lighting model usually does not
emit lights. Nevertheless, we can still follow the principles of three-
point lighting, for example we can apply the MS-HWSD only to the
light positions within the valid range of the key light and search for the
optimal key light for opaque objects.

The light behind the scene, called the rim light in the three-point
lighting model, is normally used to visually separate the subject from
the background. In volume visualization, a light behind transparent
structures can also produce good visual perception as the radiance will
not be occluded by the back structures and can traverse the whole vol-
ume to reveal the internal structures clearly. In Fig. 4(a), the optimal
light position selected by lighting entropy [10] is located at the back of
the light-position sphere. Fig. 7(d) gives another example for the en-
gine data set. The global structure of the engine in the unilluminated
image is very clear due to the appropriate classification, but the light
source selected by the MS-HWSD provides shape and boundary cues
for the internal structures and it also conveys more structural details
on the left and right surfaces of the engine.

As the radiance from the external light is slightly absorbed in the
transparent structures, its contribution to the rendered result is lim-
ited. It is not easy to recognize the lighting effects on transparent
structures. Thus, automatic lighting design approaches usually favor
structures that are more opaque. This is reasonable in volume visu-
alization, since the users often highlight important structures with a
high opacity value to make them more visible during the classification
process. Fig. 8 shows an example for the vismale head data set. The
skin is set transparent to make the skull visible. Although there may be
many structural details on the skin, the optimal light sources selected
by lighting entropy, multi-scale entropy [26] and the MS-HWSD all
improve structure perception much more for the skull than for the
skin. In addition, it is difficult to enhance the perception of trans-
parent structures against a white background, as white light enhances
the luminance value of sampled points during the ray casting, and this
makes the illuminated color and the background hard to distinguish.

Three methods have been used to select the optimal light sources for
the seven volume data sets used in the visual comparisons in Fig. 4,
Fig. 7 and Fig. 8. Lighting entropy prefers lighting effects with an
even intensity distribution. As the unilluminated image of the hydro-
gen atom data set has many areas of high intensity, the optimal light
source is selected by lighting entropy to retain the original dark areas,
as shown in Fig. 4(a). This lighting makes little contribution to the
internal shape perception compared to the other selected light sources.
Multi-scale entropy is based on 4 levels of Haar wavelet decompo-
sition and is calculated by the Shannon entropy of the wavelet coef-
ficients. Thus, multi-scale entropy prefers an even distribution of the
wavelet coefficients. As shown in Fig. 7(b), the result from multi-scale
entropy is more easily affected by rendering artifacts, as these tend to
make the intensity distribution of the wavelet coefficients more even.
The MS-HWSD is derived from the principles of the HVS, and the
optimal lighting parameters found by the MS-HWSD generate ren-
dered images that convey the most significant structural information
compared to the unilluminated image, such as the shape in Fig. 7(b)
and the detail in Fig. 7(d). The MS-HWSD prefers lighting parame-
ters that render images with better luminance, contrast and structure
enhancements, as shown in Fig. 3.

Lighting Similarity. Fig. 5 shows the effectiveness of lighting
similarity in the design of multiple light sources. Fig. 7(f) presents
an example for a tomato data set. The two light sources selected
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Fig. 7. Visual comparison of three lighting design methods for five volume data sets. The optimal lighting parameters from left to right in each
sub-figure are selected using lighting entropy, multi-scale entropy and the proposed MS-HWSD, respectively: (a) tooth, (b) teapot, (c) daisy pollen
grain, (d) engine, (e) tomato with one light source, (f) tomato with two light sources.

(a) (b) (c) (d) (e)

Fig. 8. Visual comparison of three lighting design methods and lighting stability analysis for the vismale data set: (a) optimal light source using
lighting entropy, (b) optimal light source using multi-scale entropy, (c) optimal light source of the proposed MS-HWSD (β = 1.0 in Equation 11), (d)
most stable light source (β = 0.0), (e) optimal light source based on lighting goodness and stability (β = 0.4).

by lighting entropy are spatially separated, as it also considers light
source independence based on conditional entropy. However, multi-
scale entropy does not take into account light source independence,
and hence the selected light sources have a high overlap of illumina-
tion. In the proposed greedy approach, lighting similarity is used as
the light source independence criterion to select the next light source.
Although it may not find the same light sources as the brute-force ap-
proach (Fig. 5 has the same light sources as selected by the brute-
force approach, but the light sources in Fig. 7(f) are slightly differ-
ent from the brute-force approach), the proposed greedy approach has
good scalability and can obtain a satisfactory result. Furthermore, the
user can adjust the parameter α to balance the structural enhancement
and the dissimilarity between the light sources.

An example in which representative light sources are selected is
shown in Fig. 9. Fig. 5(b) is the deformed light-position sphere for
the selection of the first representative light source, which is the one
with the highest MS-HWSD value, as shown in Fig. 5(a). We then
select as the next representative light source, the one with the small-
est similarity to the previously selected light sources - this is expected
to reveal structural information that was not presented by the previ-
ous light sources. This corresponds to the case α = 0 in Equation 10.
The deformed similarity sphere compared to the first representative
light source is displayed in Fig. 9(a), and the second representative
light source is selected from this sphere. As shown from the deformed
light-position sphere, the worst light position in Fig. 5(b) does not nec-
essarily have the smallest similarity with the optimal light position.
Similarly, Fig. 9(b) shows the deformed similarity sphere compared to
the first two representative light sources, and the third representative
light source can be selected from this sphere. These three representa-
tive light sources collectively give a good visualization of the engine
data set by revealing different structures through lighting effects.

Lighting Stability. Fig. 8(d) shows the most stable light position
for the vismale data set, and the optimal light source based only on
the MS-HWSD is shown in Fig. 8(c). The most unstable light position
is usually opposite the viewpoint and produces few lighting effects
on structures. In this case, a small deviation from the most unstable
light position would generate significantly different lighting effects.
Lighting goodness and lighting stability are combined in Equation 11
to search for a stable and good light source. As shown in Fig. 8(e) with
β = 0.4, the shape and local details on the frontal skull are more easily
perceptible.

User Study. A user study was performed to verify that the pro-
posed MS-HWSD is an effective lighting goodness metric by compar-
ing two images with the same volume and viewpoint, but with dif-
ferent light positions. We randomly selected 20 pairs of light posi-
tions for each of the vismale and engine data sets illustrated in Figs. 3
and 5, respectively. As in the viewpoint comparison, it is effective to
compare pairs with nearby light positions as the lighting effects of the
pairs are sufficiently different to allow comparisons but not so different
that the comparisons become meaningless. We used an angular sep-
aration of π

8 radians [23]. In the random selection, we rejected light
positions that were close to previously selected light positions, and
discouraged pairs whose MS-HWSD values were too close for mean-
ingful comparisons, such as light positions that were both behind the
object. Fig. 10(a) shows the selected pairs of distributions.

As the definition of good lighting is highly subjective, and this
judgement is hard to quantify, we use paired comparisons [6] and
asked users: “Which of the two images reveals the object’s structural
information (shape and detail) better?”. We randomly select 10 pairs
from the 20 selected pairs for each data set, giving a total of 20 pair
comparisons for each user. The pairs were presented in a random se-
quence, and the two images of each pair were shown in a random
left-right order; 33 users were used, giving a total of 660 comparisons;
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Fig. 9. Lighting similarity analysis for the engine data set. The lighting-
similarity sphere is deformed and colored similar to the deformed light-
position sphere. Blue light positions are more dissimilar to the previous
selected light source(s) than red ones. (a) The lighting-similarity sphere
compared to the optimal light source, as shown in Fig. 5(a). (b) The
lighting-similarity sphere compared to the first two light sources.

each pair was compared by 9-23 users.
Fig. 10(b) shows, for each pair and each data set, the proportion

of the tests in which the image with the higher MS-HWSD value was
selected. For 35 of the 40 pairs (87.5%), the image with the higher
MS-HWSD value was chosen in more than 50% of the selections; for
23 (more than half) of the pairs, the selection rate was greater than or
equal to 80%. Overall, the user preferences were consistent with the
MS-HWSD comparison in 78.9% of the pairs (521 comparisons).

The lowest percentage achieved was 33.3%, for the 15th pair of the
engine data set. In this pair, the image with the overall higher MS-
HWSD value had highlights in some regions, and it was found that
users generally do not like highlights. However, with minor excep-
tions, the MS-HWSD proved itself a good lighting quality metric for
measuring the enhancement of structural information.

Another user study was conducted to find out if the proposed ap-
proach identifies a better optimal light source in terms of structural
information than other methods, from the user’s point of view. Users
viewed test sets and were asked to select which image reveals the ob-
ject’s structural information best. Lighting entropy, multi-scale en-
tropy and the MS-HWSD were compared using the eight sets of im-
ages shown in Figs. 4, 7 and 8, which include seven with a single light
source and one with two light sources. The test sets were presented in
a random order, and the three images in a test set were also displayed
randomly. The images were analyzed by 36 users, some of whom had
previous knowledge of volume rendering.

Table 1 shows the statistics from the data collected. Users gener-
ally preferred the lighting parameters selected by the MS-HWSD over
those from lighting entropy and multi-scale entropy. For a single light
source, the selection percentages of the MS-HWSD were highest in
six of the seven test sets, the exception being the pollen. In the tomato
test set, 66.67% preferred the MS-HWSD an absolute majority of the
users. For multiple light sources (tomato2), the proposed approach
based on the MS-HWSD and lighting similarity was again found to
provide better lighting parameters than other two.

For the pollen data set, the multi-scale entropy performed better
than the MS-HWSD; this may be accounted for by the fact that the
light sources selected by the multi-scale entropy and MS-HWSD are
similar and the users found it difficult to decide which is the best. For
the engine, while the light source selected by the MS-HWSD reveals
more detail information on the surface, the selection percentage of the
MS-HWSD is not much higher than that of the multi-scale entropy.
This may be because users often prefer clear global structures to clear
local details.

The users were also asked about the reasons for their selections.
One noticeable comment for the teapot data set was that illumination
effects make the teapot lid clearer.

θ

φ

(a) (b)

Fig. 10. (a) θ ×ϕ distribution of the pairs of selected light positions for
the vismale and engine data sets in our study (20 pairs per data set). (b)
For each pair of images, the proportion of selections in which the image
with the higher MS-HWSD value was chosen.

Table 1. User study statistics.

Selection Percentage (%)
Test Sets Lighting Entropy Multi-Scale Entropy MS-HWSD

tooth 16.67 36.11 47.22
teapot 30.55 27.78 41.67
atom 22.22 33.33 44.44
pollen 11.11 47.22 41.67
engine 25.00 33.33 41.67
tomato 19.44 13.89 66.67
vismale 27.78 22.22 50.00
tomato2 30.55 27.78 41.67

Limitations. Since the definition of a good lighting configuration
is highly subjective and depends greatly on the specific application,
it is hard to generate absolutely optimal lighting parameters for all
situations. This also explains the variations in the results from our
user studies. For the MS-HWSD, we simply average all single-scale
HWSD values. Although it worked well in our experiments, it would
be better to use an image synthesis-based approach, similar to that used
in MS-SSIM [28], to calibrate the weight of each scale, as the relative
importance between different scales may be different.

As in lighting entropy and multi-scale entropy, the proposed MS-
HWSD is an image-space-based metric. It may be beneficial to inte-
grate object-space information for automatic lighting design, such as
the importance of features, and domain knowledge may also be impor-
tant for the lighting design in specific applications.

8 CONCLUSION

In this paper, we have presented a structure-aware automatic lighting
design approach for volume visualization. The basic idea is to mea-
sure the structural differences between images with and without exter-
nal illumination at different resolutions in order to quantify the quality
of the lighting configurations. We proposed three lighting character-
istics: lighting goodness, lighting similarity and lighting stability, on
which to base automatic lighting design techniques. Our experiments,
together with the user study, demonstrated the effectiveness of the pro-
posed techniques, which release users from the intensive and laborious
work needed to find the optimal lighting configuration. Since the pro-
posed automatic lighting design searches only for the optimal light-
ing parameters for a fixed viewpoint, we plan to extend the proposed
method to support interactive viewpoint changes. One possible solu-
tion is to optimize the pre-computed lighting parameters on the view-
ing sphere. In addition, we will extend the proposed lighting design
techniques to time-varying volumes.
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